Syllabi and S.O.E. for Minor Course(s) for UG Programs w.e.f. 2024-25 session

SYLLABI AND SCHEME OF EXAMINATIONS FOR MINOR COURSES FOR UNDER GRADUATE PROGRAMS (SINGLE MAJOR / MULTIDISCIPLINARY/ BACHELOR OF SCIENCE (MATHEMATICS) 4-YEAR PROGRAMS)

(Based on Curriculum and Credit Framework for UG Programs under NEP)

WITH EFFECT FROM THE SESSION 2024-25

MAHARSHI DAYANAND UNIVERSITY ROHTAK (HARYANA)

SYLLABI AND SCHEME OF EXAMINATIONS FOR MINOR COURSES FOR

UNDER GRADUATE SINGLE MAJOR/MULTIDISCIPLINARY PROGRAMS/ SINGLE MAJOR PROGRAM AFTER 2nd SEMESTER OF MULTIDISCIPLINARY PROGRAM

Minor Courses (MIC)/ Minor (Vocational) Course MIC(VOC)	TYP	E OF PROGRAM				edits tribu	tion	Total Credits	W	orkloa	d	Total Workload	Marks Id				
	SINGLE MAJOR PROGRAM SEMESTER	MULTIDISCIPLINARY PROGRAM / SINGLE MAJOR PROGRAM AFTER 2nd SEMESTER OF MULTIDISCIPLINARY PROGRAM SEMESTER	Nomenclature of Course	Course Code	L	T	Р		L	T	P		Theory	External	Practical	External	Total Marks
	SEMESTER	SEMESTER											Internal		Internal		
MIC 1 @ 4 credits	1	1	Basic Mathematics	24MAT401MI01	3	1	0	4	3	1N	0	3+1N	30	70	0	0	100
MIC 2 @ 4 credits	2	3	Business Mathematics	25MAT402MI01	3	1	0	4	3	1N	0	3+1N	30	70	0	0	100
MIC 3 @ 4 credits	3	6	Operations Research	26MAT403MI01	2	0	2	4	2	0	4N	2+4N	15	35	15	35	100
MIC 4 (VOC) @ 4 credits	4	4	Mathematical Computing using Python	25MAT404MV01	2	0	2	4	2	0	4N	2+4N	15	35	15	35	100
MIC 5 (VOC) @ 4 credits	5	5	Mathematical Computing using Matlab	26MAT405MV01	2	0	2	4	2	0	4N	2+4N	15	35	15	35	100
MIC 6 (VOC) @ 4 credits	6	6	Data Structure Using C	26MAT406MV01	2	0	2	4	2	0	4N	2+4N	15	35	15	35	100
MIC 7 (VOC) @ 4 credits	7	7	Programming in C and Data	24MAT201MV01	2	0	2	4	2	0	4N	2+4N	15	35	15	35	100

			Structure														
MIC 8 (VOC) @ 4 credits	8	8	Applied Numerical Analysis	24MAT202MV01	3	1	0	4	3	1N	0	3+1N	30	70	-	-	100

N : Total Number of Groups in the Class

L: Lecture; T: Tutorial; P: Practical

Note:

- 1. The Syllabi and Scheme of Examinations (SOE) for Minor (Vocational) Courses for UG Semester 7 and Semester 8 will be same as applicable for Vocational Course in Post Graduate semester 1 and semester 2 respectively.
- 2. Course coding of Minor courses for Single Major Programs will be applicable for Multidisciplinary Programs/ Multidisciplinary Programs after 2nd semester irrespective of their offering in any semester.
- 3. The student who select any Minor Course (MIC) of any discipline in first semester should study the Minor courses (MIC) in the same discipline in the subsequent semesters. However, while exercising the option for choosing Minor Vocational Course MIC (VOC), the student may opt the discipline either related to the discipline of Minor Course or the discipline of Major Course or any other discipline as per his/her choice.

Syllabi for Minor Courses in Mathematics

Semester: I

Name of Program		Program Code	
Name of the Course	BASIC	Course Code	24MAT401MI01
	MATHEMATICS		
Hours per Week	04 Hours	Credits	04 Credits
Maximum Marks	100{External (term-end	Time of Examinations	03 Hours
	exam) - 70		
	(Internal – 30)		
Note:			
	estions and the candidates w		
	llsory containing four short an		
	n each section and the candid	dates will be required to atte	empt one question from each
Section. All questions wil			
Course Learning Outcon			
	be of matrices and compute the		the matrices.
	ntegration to solve many real		
	nd minima of several function		
CLO4 Solve several syst	tem of linear equations using		
		ion – I	
Coloulus: (Problems and the	agencie involving triggenome	······································) D'CC $d' d'$ D $d' 1$
Calculus. (Froblems and u	leorenis involving urgonome	trically ratios are not to be d	one). Differentiation: Partial
derivatives up to second or	rder; Homogeneity of function	ns and Euler's theorem; tota	l differentials,
derivatives up to second or Differentiation of implicit	rder; Homogeneity of function function with the help of tota	ns and Euler's theorem; tota l differentials. Maxima and l	l differentials, Minima; Cases of one
derivatives up to second or Differentiation of implicit variable involving second	rder; Homogeneity of function	ns and Euler's theorem; tota l differentials. Maxima and l	l differentials, Minima; Cases of one
derivatives up to second or Differentiation of implicit	rder; Homogeneity of function function with the help of tota or higher order derivatives; C	ns and Euler's theorem; tota l differentials. Maxima and l cases of two variables involv	l differentials, Minima; Cases of one
derivatives up to second of Differentiation of implicit variable involving second constraint.	rder; Homogeneity of function function with the help of tota or higher order derivatives; C	ns and Euler's theorem; tota l differentials. Maxima and l Cases of two variables involv on – II	l differentials, Minima; Cases of one ing not more than one
derivatives up to second or Differentiation of implicit variable involving second constraint. Integration: Integration as	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star	ns and Euler's theorem; tota l differentials. Maxima and l Cases of two variables involv on – II ndard forms; Methods of in	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by
derivatives up to second or Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star- tial fractions; Definite integ	ns and Euler's theorem; tota l differentials. Maxima and Cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and
derivatives up to second or Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star- tial fractions; Definite integ of Commodities learning Cur	ns and Euler's theorem; tota l differentials. Maxima and Cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin ve; Leontiff Input-Output M	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and
derivatives up to second of Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star tial fractions; Definite integ of Commodities learning Cur Section	ns and Euler's theorem; tota l differentials. Maxima and l Cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin rve; Leontiff Input-Output M on – III	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and
derivatives up to second of Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star tial fractions; Definite integ of Commodities learning Cur Section strix; Types of matrices; Alge	ns and Euler's theorem; tota l differentials. Maxima and l Cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin ve; Leontiff Input-Output M on – III bra of matrices.	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and
derivatives up to second of Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature Matrices: Definition of ma	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star- tial fractions; Definite integ of Commodities learning Curr Section atrix; Types of matrices; Alge Section	ns and Euler's theorem; tota l differentials. Maxima and l cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin ve; Leontiff Input-Output M on – III bra of matrices. on – IV	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and lodel.
derivatives up to second of Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature Matrices: Definition of ma Determinants: Properties of	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star tial fractions; Definite integ of Commodities learning Cur Section attrix; Types of matrices; Alge Section of determinants; calculation of	ns and Euler's theorem; tota l differentials. Maxima and l cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin ve; Leontiff Input-Output M on – III bra of matrices. on – IV of values of determinants up	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and odel.
derivatives up to second of Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature Matrices: Definition of ma Determinants: Properties of matrix, through Adjoint a	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star tial fractions; Definite integ of Commodities learning Cur Section trix; Types of matrices; Alge Section of determinants; calculation of and elementary row or colu	ns and Euler's theorem; tota l differentials. Maxima and l cases of two variables involv on - II ndard forms; Methods of in ration; Finding areas in sin two; Leontiff Input-Output M on - III bra of matrices. on - IV of values of determinants up mn operations; Solution of	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and odel.
derivatives up to second of Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature Matrices: Definition of ma Determinants: Properties of matrix, through Adjoint a having unique solution and	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Star tial fractions; Definite integ of Commodities learning Cur Section attrix; Types of matrices; Alge Section of determinants; calculation of	ns and Euler's theorem; tota l differentials. Maxima and l cases of two variables involv on - II ndard forms; Methods of in ration; Finding areas in sin two; Leontiff Input-Output M on - III bra of matrices. on - IV of values of determinants up mn operations; Solution of	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and odel.
derivatives up to second of Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature Matrices: Definition of ma Determinants: Properties of matrix, through Adjoint a having unique solution and References:	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Stan tial fractions; Definite integ of Commodities learning Cur Section section trix; Types of matrices; Alge Section of determinants; calculation of and elementary row or colu d involving not more than three	ns and Euler's theorem; tota 1 differentials. Maxima and 1 Cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin- ve; Leontiff Input-Output M on – III bra of matrices. on – IV of values of determinants up mn operations; Solution of ee variables.	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and odel.
derivatives up to second on Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature Matrices: Definition of ma Determinants: Properties of matrix, through Adjoint a having unique solution and References: 1. Allen R.G.D: Bas	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Start tial fractions; Definite integ of Commodities learning Cur Section and elementary row or colu d involving not more than three sic Mathematics; Mcmillan, N	ns and Euler's theorem; tota 1 differentials. Maxima and 1 cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin- ve; Leontiff Input-Output M on – III bra of matrices. on – IV of values of determinants up mn operations; Solution of ee variables. Jew Delhi, 1971.	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and odel.
derivatives up to second on Differentiation of implicit variable involving second constraint. Integration: Integration as parts, and by use of part producers surplus; Nature Matrices: Definition of ma Determinants: Properties of matrix, through Adjoint a having unique solution and References: 1. Allen R.G.D: Bas 2. Volra. N. D. Qua	rder; Homogeneity of function function with the help of tota or higher order derivatives; C Section anti-derivative process; Stan tial fractions; Definite integ of Commodities learning Cur Section section trix; Types of matrices; Alge Section of determinants; calculation of and elementary row or colu d involving not more than three	ns and Euler's theorem; tota l differentials. Maxima and l cases of two variables involv on – II ndard forms; Methods of in ration; Finding areas in sin- ve; Leontiff Input-Output M on – III bra of matrices. on – IV of values of determinants up mn operations; Solution of ee variables. New Delhi, 1971. gement, Tata McGraw Hill,	l differentials, Minima; Cases of one ing not more than one tegration by substitution, by nple cases; Consumers and odel.

Semester: II

MATHEMATICS Mathematics Hours per Week 04 Hours Credits	Name of Program		Program Code			
Hours per Week 04 Hours Credits 04 Credits Maximum Marks 100{External (term-end exam) – 70} (Internal – 30) Time of Examinations 03 Hours Note: Examiner will set nine questions and the candidates will be required to attempt five questions in all. Question number one will be compulsory containing four short answer type questions from all sections. Further, examiner will set two questions from each section and the candidates will be required to attempt one question from each Section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section - I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section - II Section - II Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section - IV Section - IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans	Name of the Course	BUSINESS	Course Code	24MAT402MI01		
Maximum Marks 100 {External (term-end exam) – 70} (Internal – 30) Time of Examinations 03 Hours Note: Examiner will set nine questions and the candidates will be required to attempt five questions in all. Question number one will be compulsory containing four short answer type questions from all sections. Further, examiner will set two questions from each section and the candidates will be required to attempt one question from each Section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section - I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section - II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section - IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. <tr< th=""><th></th><th>MATHEMATICS</th><th></th></tr<>		MATHEMATICS				
exam) – 70} (Internal – 30) Note: Examiner will set nine questions and the candidates will be required to attempt five questions in all. Question number one will be compulsory containing four short answer type questions from all sections. Further, examiner will set two questions from each section and the candidates will be required to attempt one question from each Section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971.	Hours per Week	04 Hours	Credits	04 Credits		
Internal – 30) Note: Examiner will set nine questions and the candidates will be required to attempt five questions in all. Question number one will be compulsory containing four short answer type questions from all sections. Further, examiner will set two questions from each section and the candidates will be required to attempt one question from each section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Clo2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. Referen	Maximum Marks		Time of Examinations	03 Hours		
 Note: Examiner will set nine questions and the candidates will be required to attempt five questions in all. Question number one will be compulsory containing four short answer type questions from all sections. Further, examiner will set two questions from each section and the candidates will be required to attempt one question from each Section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – II Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 						
Examiner will set nine questions and the candidates will be required to attempt five questions in all. Question number one will be compulsory containing four short answer type questions from all sections. Further, examiner will set two questions from each section and the candidates will be required to attempt one question from each Section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.		(Internal – 30)				
number one will be compulsory containing four short answer type questions from all sections. Further, examiner will set two questions from each section and the candidates will be required to attempt one question from each Section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. CLO4 Understand the problems up to three variables, including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.						
will set two questions from each section and the candidates will be required to attempt one question from each Section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 						
 Section. All questions will carry equal marks. Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: Allen R.G.D: Basic Mathematics; Memillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 						
Course Learning Outcomes (CLO): CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Section – III Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case o			dates will be required to atte	empt one question from each		
CLO1 Solve many LPP using graphs. CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 						
CLO2 Use methods of LPP to solve many problems related to transportation, maximization and minimization etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 						
etc. CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Memillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.			1 . 1			
CLO3 Obtain compound interest wit different types of interest rates. CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 		LPP to solve many problems	related to transportation, max	ximization and minimization		
CLO4 Understand the problems related to annuities. Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.		1	<u> </u>			
Section – I Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.	1		of interest rates.			
Linear Programming-Formulation of LPP: Graphical method of solution; Problems relating to two variables including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.	CLO4 Understand the		• •			
including the case of mixed constraints; Cases having no solution, multiple solutions, unbounded solution and redundant constraints. Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.	I : D					
redundant constraints. Section – II Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.						
Section – II Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.		ed constraints; Cases naving n	io solution, multiple solution	s, unbounded solution and		
Simplex Method—Solution of problems up to three variables, including cases of mixed constraints; Duality; Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.	redundant constraints.	See.4				
Transportation Problem. Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.	Simpley Method Solut		-	mixed constraints. Duality		
Section – III Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.		ion of problems up to three v	variables, including cases of	mixed constraints, Duanty,		
Compound Interest: Certain different types of interest rates; Concept of present value and amount of a sum. Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.		Saati	on — III			
Section – IV Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.	Compound Interest: Cert			e and amount of a sum		
 Annuities: Types of annuities; Present value and amount of an annuity, including the case of continuous compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 	Compound microst. Certa			e and amount of a sum.		
 compounding; Valuation of simple loans and debentures; Problems relation to sinking funds. References: Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 	Annuities: Types of an			ing the case of continuous		
 References: 1. Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. 2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 						
 Allen R.G.D: Basic Mathematics; Mcmillan, New Delhi, 1971. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990. 	· · · · · · · · · · · · · · · · · · ·	or simple toans and debenture	s, i roorenis relation to sinki	15 101005.		
2. Volra. N. D. Quantitative Techniques in Management, Tata McGraw Hill, New Delhi, 1990.		asic Mathematics: Memillan	Jew Delhi 1971			
				New Delhi 1990		

Semester: III

Name of Program		Program Code	
Name of the Course	OPERATIONS	Course Code	25MAT403MI01
	RESEARCH		
Hours per Week	06 Hours	Credits	04 Credits
Maximum Marks	100 (50 Theory + 50 Practical)	Time of Examinations	03 Hours
Note:	Tructicuity		
number one will be compu will set two questions from Section. All questions will Course Learning Outcor CLO1 Know about oper CLO2 Formulate and so CLO3 Understand the co CLO4 Define, classify a CLO5 Distinguish betwo and the techniques to solve Linear programming prob- formulation of the linear p	Ilsory containing four short m each section and the cano l carry equal marks. nes (CLO): ations research models, its r lve LPP's using Graphical a oncept of duality in linear pr nd handle different types of een assignment problems, c e them. Sec lems (LPP): Introduction to rogramming problems with	rogramming.	Il sections. Further, examine empt one question from each n. velling salesman problems s (LPP), Mathematical od used for solving linear
Simplex algorithm, Simpl	Sec nd non basic variables, The ex method in tableau forma	tion – II eory of Simplex method, opti at. Introduction to artificial va	
method, Big-M method, D	egeneracy problem in simp	lex method. ion – III	
problem using North-Wes transportation problem us problem.	t Corner, Least Cost Metho ing MODI method, Unbala	on problem, Initial basic feasi od and Vogel's approximation nced transportation problem, tion – IV oblem, Mathematical formula	Method. Optimal solution to Degeneracy in transportation
	blem using Hungarian met		aton of assignment problem
in and gradent pro-		(Practical)	
			ernal (term-end exam) – 35} (Internal – 15)
			Time : 3 Hours
theory paper 25MAT403	MI01 (Part-A). There will b ion paper will set on the spo be as follows: 21	of implementation of Linear is the five questions in all, and the of jointly by the internal and es	Programming, studied in the ne students must attempt any
Poforoncos:			
References:			
		Operations Research, S. Chand ishing House Pvt. Ltd, 2012.	and Co. Pvt.Ltd, 2010.